Transient cortical excitation at the onset of visual fixation.
نویسندگان
چکیده
Primates actively examine the visual world by rapidly shifting gaze (fixation) over the elements in a scene. Despite this fact, we typically study vision by presenting stimuli with gaze held constant. To better understand the dynamics of natural vision, we examined how the onset of visual fixation affects ongoing neuronal activity in the absence of visual stimulation. We used multiunit activity and current source density measurements to index neuronal firing patterns and underlying synaptic processes in macaque V1. Initial averaging of neural activity synchronized to the onset of fixation suggested that a brief period of cortical excitation follows each fixation. Subsequent single-trial analyses revealed that 1) neuronal oscillation phase transits from random to a highly organized state just after the fixation onset, 2) this phase concentration is accompanied by increased spectral power in several frequency bands, and 3) visual response amplitude is enhanced at the specific oscillatory phase associated with fixation. We hypothesize that nonvisual inputs are used by the brain to increase cortical excitability at fixation onset, thus "priming" the system for new visual inputs generated at fixation. Despite remaining mechanistic questions, it appears that analysis of fixation-related responses may be useful in studying natural vision.
منابع مشابه
L-NAME and 7-Nitroindazole Reduces Brain Injuries in Transient Focal Cerebral Ischemia in Rat
Background: The role of nitric oxide (NO) of endothelial or neuronal origins in cerebral ischemia and reperfusion injuries are far from being settled, extending from being important to not having any role at all. Objective: To investigate the role of NO of endothelial and neuronal origins in ischemia/reperfusion injuries in focal cerebral ischemia, L-NAME, a non selective NO synthase inhibitor...
متن کاملEvaluation the protective effect of aminoguanidine on cortex and striatum damage in acute phase of focal cerebral ischemia in rat
Introduction: Several studies have indicated that late treatment of aminoguanidine (AG) reduces cerebral ischemic injuries in animal models. However, the effects of early treatment of AG on cerebral ischemic damage are not well understood. This study was designed to evaluate effect of early treatment of AG on cortex and striatum injuries as well as neurological dysfunctions in transient mode...
متن کاملتاثیر هم افزایی دوچشمی بر مولفه های موج پتانسیل برانگیخته بینایی
Background : To determine the effect of binocular summation on the time domain transient VEP wave's components. Methods : The monocular and binocular transient visual evoked potentials of 21 normally vision volunteers 18 to 24 years (mean ± SD, 20.7 ± 1.9) during a reversing checkerboard stimulus with spatiotemporal frequency of 2.18-4 cpd-Hz were recorded. The amplitude and latency of N75,...
متن کاملCortical synchronization suggests neural principles of visual feature grouping.
Compositions of visual scenes are related here to neural signals in visual cortex and to cortical circuit models to understand neural mechanisms of perceptual feature grouping. Starting from the hypothesis that synchronization and decoupling of cortical gamma-activities (35-90 Hz) define the relations among visual objects, we concentrate on synchronization related to (1) static retinal stimulat...
متن کاملGABAergic inhibition shapes frequency adaptation of cortical activity in a frequency-dependent manner.
Primary sensory cortical areas continuously receive thalamic inputs that arrive at different frequencies depending on the amount of sensory activity. The cortical response to repeated sensory stimuli rapidly adapts and different frequencies recruit cortical neuronal networks to different extents. GABAergic inhibition limits the spread of excitation within cortical neuronal networks. However, it...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 18 1 شماره
صفحات -
تاریخ انتشار 2008